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Abstract. Recent developments in the theoretical investigation of the one-dimensional Kondo
lattice model by using the density matrix renormalization group (DMRG) method are discussed
in this review. Short summaries are given of the zero-temperature DMRG method, the finite-
temperature DMRG method, and also the application of the finite-T DMRG to dynamic quantities.

Away from half-filling, the paramagnetic metallic state is shown to be a Tomonaga–Luttinger
liquid with a large Fermi surface. The size of the large Fermi surface is determined by the sum of
the densities of the conduction electrons and the localized spins. The correlation exponentKρ of
this metallic phase is smaller than 1/2. At half-filling the ground state is insulating. The excitation
gaps are different, depending on the channels, the spin gap, the charge gap and the quasiparticle
gap. The temperature dependence of the spin and charge susceptibilities and the specific heat are
discussed. Particularly interesting is the temperature dependence of various excitation spectra,
which indicates unusual properties for the Kondo insulators.

1. Introduction

For a degenerate Fermi gas, the low-temperature specific heat is linear inT and the
proportionality constant is given by the density of states at the Fermi energy. For the free
electrons the density of states including the two spin directions is given by

D(εF) = mkF

π2h̄2 (1)

wherem is the free-electron mass andkF is the Fermi wavenumber.
To include the effect of the electron–electron interaction, Landau developed the theory of

Fermi liquids. Since the volume of the Fermi sphere is determined by the density of electrons,
it is a reasonable assumption that the Fermi wavenumber is not changed by the interaction; this
was in fact proven later by Luttinger [1]. According to Landau, the effect of the interaction can
be taken into account by replacing the bare-electron massm by an effective massm∗. Thus the
importance of interaction effects in each material may be judged from the electronic specific
heat at low temperatures.

For ordinary metals the coefficient of theT -linear term,γ , is of the order of mJ mol−1 K−2.
However, among the rare-earth and actinide compounds there is a group of compounds whose
γ -values are in the range from 0.1 J mol−1 K−2 to more than 1 J mol−1 K−2. This class of
materials is called the heavy-fermion system or heavy-electron system. A key feature of the
heavy-fermion system is that it contains two different types of electron: relatively localized

0953-8984/99/020001+30$19.50 © 1999 IOP Publishing Ltd R1



R2 N Shibata and K Ueda

f electrons and extended conduction electrons. The interplay between the two degrees of
freedom is the essence of the heavy-fermion physics.

Since the Coulomb interaction between the f electrons is strong, a partially filled f shell in
an isolated ion possesses a well defined magnetic moment corresponding to the total angular
momentum of the f shell. A weak hybridization between the f electrons and the conduction
electrons is a source of interesting many-body problems.

When we consider a single f shell in the sea of conduction electrons, the magnetic moment
of the f electrons is unstable, leading to the Kondo singlet which is a bound state of the f moment
with the spin polarization of the conduction electrons [2]. When we consider two f shells, the
spin polarization of the conduction electrons induced by an f moment tends to stabilize the
magnetic moment of the other f shell. This is the origin of the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction [3]. Thus the Kondo effect and the RKKY interaction in many
cases compete with each other.

If the Kondo effect dominates over the RKKY interaction for some reason, a paramagnetic
heavy-fermion state will be stabilized. In this regime, the Kondo temperature or the effective
Fermi temperature in a lattice problem sets a small energy scale at low temperatures. The
existence of the small energy scale naturally leads to a large specific heat, since the entropy
associated with the magnetic degrees of freedom of f orbitals should be released in the small
temperature range.

The simplest theoretical model for the heavy-fermion physics is the Kondo lattice model.
The Kondo lattice model is given by

H =
∑
〈ij〉

∑
s

tij c
†
iscjs + J

∑
i

∑
s,s ′
Si ·

1

2
σss ′c

†
iscis ′ (2)

where theσ = (σx, σy, σz) are the Pauli matrices andSi =
∑

s,s ′
1
2σss ′f

†
isfis ′ is the f-electron

spin at sitei. In this review we will consider the model with only nearest-neighbour hoppings,
tij = −t , for the nearest-neighbour pairs.

J/t

0
0

1

Paramagnetic
Metallic

Insulating
Kondo
spin liquid

Ferromagnetic
Metallic

n c

Figure 1. The ground-state phase diagram for the one-dimensional Kondo lattice model with
nearest-neighbour hoppings.

Much effort has been invested in the study of the model and significant progress has been
achieved for one dimension in the last ten years [4]. When we fix a lattice structure, the Kondo
lattice model has only two parameters: one is the density of conduction electronsnc and the
other is the strength of the exchange coupling normalized with respect to the hopping energy
J/t . In one dimension, the ground-state phase diagram in the parameter space is completed
and this is shown in figure 1.
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There are three different phases in the phase diagram. In the region from the low-density
limit to the strong-coupling limit, a ferromagnetic metallic phase is stabilized. The spin
quantum number in this phase is given byStot = (L−Nc)/2, whereL is the number of lattice
sites andNc is the number of conduction electrons. Note that the magnetic moment vanishes
as half-filling is approached. The line of half-filling is special in the sense that the ground
state is always a non-magnetic insulator. Since the lowest excitation in this phase is a spin-
triplet excitation with a finite excitation gap, this phase is called an incompressible spin-liquid
phase. In the remaining part of the phase diagram (figure 1) which extends from the weak-
coupling limit towards the line of half-filling, the ground state is metallic and paramagnetic. In
this review we will discuss properties of the spin-liquid phase and the paramagnetic metallic
phase.

The existence of the small energy scale in the Kondo lattice model means that correlation
lengths are generally long. For example, to study the spin gap and the charge gap in the
spin-liquid phase, exact diagonalization was used at first [5]. However, the largest system size
which can be diagonalized by the Lanczos algorithm is just ten sites. This is why a non-trivial
form of a finite-size scaling was necessary for obtaining the functional form of the spin gap.

Recently, Steven White developed the density matrix renormalization group (DMRG)
method to study the ground-state properties of one-dimensional many-body systems [6]. The
advantage of this method is that systems that are an order of magnitude bigger can be studied, as
compared with the case for numerical exact diagonalization by the Lanczos algorithm. Unlike
quantum Monte Carlo simulations, the DMRG method is free from statistical errors. The
numerical errors in the DMRG method are truncation errors, but they can be estimated from
the largest eigenvalue of the density matrix which is truncated out. The truncation error may be
lessened by increasing the number of basis states for the density matrix. The DMRG method
is an ideal tool for studying the one-dimensional Kondo lattice model and in this review we
will discuss recent developments on this subject.

Further development of the DMRG method was achieved last year when Wang and
Xiang [7] and one of the authors [8] independently succeeded in obtaining thermodynamic
properties of the one-dimensional quantumXXZ-model by applying the DMRG method to
the transfer matrix (the finite-T DMRG method). Application of the finite-T DMRG method
to a system with fermion degrees of freedom started from the Kondo lattice model [9].

The present article is organized as follows. In the next section, after a brief summary
of the DMRG method for the ground state, we will describe the method used to calculate
thermodynamic properties by the finite-T DMRG method and then extend discussions to the
dynamic quantities at finite temperatures. In section 3 the nature of the paramagnetic metallic
phase away from half-filling is shown to be that of a Tomonaga–Luttinger liquid with a large
Fermi surface. The large Fermi surface means that the volume inside the Fermi surface is
determined not only by the density of conduction electrons but also includes the localized
spins. Section 4 is devoted to the discussion of the spin-liquid phase at half-filling. After the
discussion of the spin gap and the charge gap at zero temperature, we will discuss how the
excitation gaps develop as the temperature is lowered. We will conclude the present review
by giving a summary and discussion in section 5.

2. The density matrix renormalization group method

The density matrix renormalization group (DMRG) method is relatively new [6] among the
various numerical algorithms used to treat many-body problems. However, it is now widely
used as one of the most standard numerical methods for treating low-dimensional many-body
systems.
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In this section we first briefly outline the algorithm of the zero-temperature DMRG method
that was developed to study the ground-state and the low-energy excitations of one-dimensional
systems. The application of this method to the quantum transfer matrix enables us to obtain
thermodynamic quantities [8, 7] and the dynamical correlation functions at finite temperatures.
In the second part of this section we will summarize the algorithm of the finite-T DMRG
method.

i 1 i2 i3 i4

α i 2' i 3' β
L=6

L=4

L=8

Figure 2. A schematic diagram of the infinite-system algorithm of the DMRG method.

2.1. The zero-temperature algorithm

The zero-temperature DMRG method is designed to obtain the ground-state wave function
and the low-energy excitations with small systematic errors. The ground-state wave function
and the low-energy excitations of long systems are obtained by expanding the system size
iteratively as shown in figure 2. The expansion of the system is achieved by putting additional
sites in its central region to minimize the undesirable boundary effects on the added sites. The
algorithm is described in the following.

Let us start from a system of four identical sites—for example, a four-site spin chain under
open boundary conditions. An operator on thenth site, e.g.Sn, is represented in terms of the
complete basis states|in〉 as

〈in|Sn|i ′n〉 = (Sn)in,i ′n . (3)

Then we construct a representation of the HamiltonianHi1i2i3i4,i ′1i
′
2i
′
3i
′
4

for the total system. The
ground-state eigenvector

|9i1i2i3i4〉 = 9i1i2i3i4|i1〉|i2〉|i3〉|i4〉 (4)

is obtained by diagonalizing the Hamiltonian matrix by some method like the Lanczos
algorithm. Then9i1i2i3i4 is used to construct the density matrix

ρi1i2,i ′1i
′
2
=
∑
i3i4

9i1i2i3i49
∗
i ′1i
′
2i3i4

(5)

for the block containing the sitesn = 1 and 2. The density matrix specifies to what extent
the basis states|i1〉|i2〉 of the block are contributing to the total wave function|9i1i2i3i4〉. This
matrix is numerically diagonalized, and we obtain its eigenvaluesλα and eigenvectorsvαi1i2.
Then we select the eigenvectors of the largestm eigenvalues as the new basis states for the
block. Herem is the number of the basis states retained for the block at the next step. Using the
selected eigenvectors of the density matrix we represent the operators on the site, for example,
n = 2, as

(S2)α,α′ =
∑
i1i2i

′
2

(S2)i2,i ′2(v
α
i1i2
)∗vα

′
i1i
′
2
. (6)
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A similar procedure is repeated for the block containing the sitesn = 3 and 4, and all operators
in the original system are represented in terms of the new basis states:

|α〉 =
∑
i1i2

vαi1i2|i1〉|i2〉 (7)

|β〉 =
∑
i3i4

v
β

i3i4
|i3〉|i4〉. (8)

To increase the size of the system we introduce two new sites between the blocksn = 1, 2 and
n = 3, 4. Using the basis states|i2′ 〉 and|i3′ 〉, for the new sites, we construct the Hamiltonian
matrix of the expanded system:Hαi2′ i3′β,α′i ′2′ i ′3′β ′ . Renaming the indices as follows:

α→ i1 i2′ → i2 i3′ → i3 β → i4 (9)

we repeat the procedures from the diagonalization of the Hamiltonian matrix.
The key feature of the above renormalization procedure is that the new basis states|α〉

or |β〉 of each block contain the information that the block is a part of the total system. As
shown in figure 2, the edge part of each block connecting to the remaining part of the system is
located in the middle of the system, and this part is not so sensitive to the boundary conditions
imposed on the total system. Thus we expect the new basis states to also dominantly contribute
to the ground-state wave function of the expanded system which has the two additional sites
in the middle of the two blocks.

L=8

L

L'

(3) R

R'

L' R'

L' R'

L' R' (3)

L (4) R(2)

L (5) R(1)

L (4) R(2)

Figure 3. A schematic diagram of the finite-system algorithm of the DMRG method.

The above algorithm is called the infinite-system algorithm of the DMRG method. Using
this algorithm we increase the size of the system. In order to improve the basis states of the
blocks, it is necessary to fix the size of the system and use the following algorithm which
is known as the finite-system algorithm of the DMRG method. A schematic diagram of the
finite-system algorithm is shown in figure 3.

Let us take the block of sizen − 1 on the left and the other block of sizen − 1, whose
basis states are represented by|viL(n−1)〉 and|viR(n−1)〉, on the right. These basis states and the
representations of the operators in the blocks are obtained after the (n− 2)th renormalization
step from the initial four-site system. The system of size 2n is constructed by inserting two
additional sites for which the basis states are represented by|iL′ 〉 and|iR′ 〉.

We again diagonalize the Hamiltonian matrix of this 2n-site system, namely
HiL(n−1)iL′ iR′ iR(n−1),i

′
L(n−1)i

′
L′ i
′
R′ i
′
R(n−1)

, and obtain the ground-state wave function9iL(n−1)iL′ iR′ iR(n−1) .
Then we construct the density matrix

ρiL(n−1)iL′ ,i ′L(n−1)i
′
L′
=

∑
iR′ iR(n−1)

9iL(n−1)iL′ iR′ iR(n−1)9
∗
i ′L(n−1)i

′
L′ iR′ iR(n−1)

(10)
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for the subspace spanned by|viL(n−1)〉 and|iL′ 〉. We use them important eigenvectors of this
density matrix as the new basis states of the block containingn sites, and represent all operators
in the new block in terms of the new basis states.

In the next step, we take the new left-hand block withn sites and the right-hand block
with n − 2 sites. The right-hand block withn − 2 sites has been obtained at the (n − 3)th
renormalization step from the initial four-site system. Inserting two sites between these blocks,
we construct the Hamiltonian matrix of the total system,HiL(n)iL′ iR′ iR(n−2),i

′
L(n)i

′
L′ i
′
R′ i
′
R(n−2)

, and repeat
all of the above procedures.

We continue to increase (decrease) the size of the left-hand (right-hand) block until the
right-hand block is reduced to a single site. Then we turn to decreasing (increasing) the size of
the left-hand (right-hand) block in order to improve the basis states of the right-hand block. We
continue to decrease (increase) the size of the left-hand (right-hand) block until the left-hand
block is reduced to a single site. These procedures are continued back and forth until we get
a good convergence.

In general, the total energy of the system is lowered as the basis states of the blocks are
reconstructed. Thus, the lowest energy is obtained after the convergence. The wave function
obtained by the finite-system algorithm of the DMRG method may be represented in a matrix
product form [10]. Therefore the finite-system algorithm of the DMRG method is considered
to be a numerical variational method which uses the matrix product wave function. This is
another reason for our being able to achieve remarkable accuracy by the DMRG method. The
accuracy of the ground-state energy and the wave function is determined by the eigenvalues of
the density matrix which are truncated out. Thus we can improve the accuracy by increasing
the number of basis statesm used in the calculations so long as the memory of the computer
allows.

2.2. The finite-temperature algorithm

It is also possible to discuss thermodynamic quantities using a DMRG method: the finite-T

DMRG method. The readers who are not interested in the detail of the iteration procedures
may skip the paragraphs including equations (13) to (26). In this method we use the quantum
transfer matrix defined as

Tn(M) = [e−βh2n−1,2n/Me−βh2n,2n+1/M ]M

=
∑
σ2nτ1

∑
σ2nτ1

∑
σ2nτ2

· · ·
∑
σ2nτM

∑
σ2nτM

〈σ2n−1,τ1σ2n−1,τ1|e−βh2n−1,2n/M |σ2n,τ1σ2n,τ1〉

× 〈σ2n,τ1σ2n,τ2|e−βh2n,2n+1/M |σ2n+1,τ1σ2n+1,τ2〉
× 〈σ2n−1,τ2σ2n−1,τ2|e−βh2n−1,2n/M |σ2n,τ2σ2n,τ2〉
...

× 〈σ2n,τM σ2n,τ1|e−βh2n,2n+1/M |σ2n+1,τM σ2n+1,τ1〉. (11)

This quantum transfer matrix is shown graphically in figure 4. HereM is the Trotter number
andτi is the discretized imaginary time whose intervalsτi+1 − τi = β0 = β/M. In equ-
ation (11),σ2n,τi represents states of the site 2n corresponding to a given imaginary timeτi .
The HamiltonianH is assumed to be decomposed into two partsHodd =

∑L/2
n=1 h2n−1,2n and

Heven=
∑L/2

n=1 h2n,2n+1 so that we can evaluate the matrix element of the exponential function.
Since the partition functionZ is given by the trace of the product of the quantum transfer
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e-β hodd 0

e-β hodd 0

e-β hodd 0

e-β heven 0

e-β heven 0

e-β heven 0

2n-1 2n 2n+1

Mτ

2τ

2τ

Mτ

1τ

1τ

1τ

Mτ

2τ

2τ

Mτ

1τ

1τ

1τ

Figure 4. The quantum transfer matrix forM = 3. hodd andhevenrepresenth2n−1,2n andh2n,2n+1,
respectively.1τ = τi+1− τi = β0 andβ = Mβ0.

matrix:

Z = Tr e−βH = lim
M→∞

Tr (e−βHodd/Me−βHeven/M)M

= lim
M→∞

Tr

[ N/2∏
n=1

(e−βh2n−1,2n/M)

N/2∏
n=1

(e−βh2n,2n+1/M)

]M
= lim

M→∞
Tr

[
L/2∏
n=1

Tn(M)
]

(12)

the thermodynamic properties ofL→∞ are determined by the maximum eigenvalue and its
eigenvectors. To obtain the eigenvalue and the eigenvectors for a large Trotter numberM, we
iteratively increase the size of the quantum transfer matrix using a similar algorithm to that of
the zero-temperature DMRG method.

We first represent the quantum transfer matrix as

T(M) =
{
T A(M)T B(M) for M even

T A′(M)T B
′

(M) for M odd.
(13)

Thus the transfer matrix forM = 2 is

T(M=2)(σ2n−1,τ1σ2n−1,τ1σ2n−1,τ2σ2n−1,τ2; σ2n+1,τ1σ2n+1,τ1σ2n+1,τ2σ2n+1,τ2
)

=
∑
σ2n,τ1

∑
σ2n,τ2

T A(M=2)(σ2n−1,τ1σ2n−1,τ1σ2n,τ2; σ2n,τ1σ2n+1,τ1σ2n+1,τ2)

× T B(M=2)(σ2n−1,τ2σ2n−1,τ2σ2n,τ1; σ2n,τ2σ2n+1,τ2σ2n+1,τ1). (14)

Here we have introducedT A(M=2) andT B(M=2) which are defined as

T A(M=2)(σ2n−1,τ1σ2n−1,τ1σ2n,τ2; σ2n,τ1σ2n+1,τ1σ2n+1,τ2)

=
∑
σ2n,τ1

〈σ2n−1,τ1σ2n−1,τ1|e−βhodd/M |σ2n,τ1σ2n,τ1〉

× 〈σ2n,τ1σ2n,τ2|e−βheven/M |σ2n+1,τ1σ2n+1,τ2〉 (15)

T B(M=2)(σ2n−1,τ2σ2n−1,τ2σ2n,τ1; σ2n,τ2σ2n+1,τ2σ2n+1,τ1)
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=
∑
σ2n,τ2

〈σ2n−1,τ2σ2n−1,τ2|e−βhodd/M |σ2n,τ2σ2n,τ2〉

× 〈σ2n,τ2σ2n,τ1|e−βheven/M |σ2n+1,τ2σ2n+1,τ1〉 (16)

wherehodd= h2n−1,2n andheven= h2n,2n+1. Then we iteratively increaseM of T A(M) andT B(M)
as follows:

T A(M)e−β0hodd→ T A′(M+1) (17)

e−β0hevenT B(M)→ T B
′

(M+1) (18)

T A′(M)e
−β0heven→ T A(M+1) (19)

e−β0hoddT B ′(M)→ T B(M+1). (20)

An example for the increase ofM, equations (17) and (18), forM = 2 is shown graphically
in figure 5.

T(M=2)

T(M=3)

3τ

2τ

2τ

3

3,3

τ

1τ

1τ

1τ

2τ

2τ

1τ

1τ

1τ

2τ

2τ

1τ

1τ

1τ

{

{

3τ

2τ

2τ

3τ

1τ

1τ

1τ

}

} α

1,2α

3,3α

1,2α

T(M=2)
B

T(M=2)
A

T(M=3)
B'

T(M=3)
A'

Figure 5. The increasing ofM for the quantum transfer matrixT . Theαn,m are the indices of the
new basis states.

In order to represent the transfer matrix in terms of a restricted number of basis states, we
have to select the important basis states which have significant weight for the representation of
the transfer matrix. For this purpose we use a generalized asymmetric density matrix similar
to that used in the zero-temperature DMRG method. For example, the density matrix which
we use in the procedure of equation (17) forM = 2 is

ρ(σ2n−1,τ1σ2n−1,τ2; σ2n+1,τ1σ2n+1,τ2)

=
∑
στ1

∑
στ2

V L(στ1σ2n−1,τ1, σ2n−1,τ2στ2jV
Riστ1σ2n+1,τ1, σ2n+1,τ2στ2) (21)

whereV L andV R are the left and right eigenvectors ofT(M=2) which have the maximum
eigenvalue. TheV L andV R are generally different owing to the transfer matrix being non-
Hermitian. The diagonalization of the density matrix provides eigenvectors,vLα andvRα , which
satisfy the equations∑

στ1στ2

vLα (στ1στ2)ρ(στ1στ2; σ ′τ1
σ ′τ2
) = γαvLα (σ ′τ1

σ ′τ2
) (22)

∑
στ1στ2

ρ(σ ′τ1
σ ′τ2
; στ1στ2)v

R
α (στ1στ2) = γαvRα (σ ′τ1

σ ′τ2
). (23)
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We select them eigenvectors which have the largest eigenvaluesγα, and we use them as the
new basis states:

〈α2n−1| =
∑
σ2n−1,τ1

∑
σ2n−1,τ2

vLα (σ2n−1,τ1σ2n−1,τ2)〈σ2n−1,τ1σ2n−1,τ2| (24)

|α2n+1〉 =
∑
σ2n+1,τ1

∑
σ2n+1,τ2

vRα (σ2n+1,τ1σ2n+1,τ2)|σ2n+1,τ1σ2n+1,τ2〉. (25)

Then we representT A′(M=3) as

T A′(M=3)(σ2n−1,τ1α2n−1,τ1,2σ2n−1,τ2; σ2n,τ1α
′
2n+1,τ1,2

σ2n,τ2)

=
∑
σ2n−1,τ1

∑
σ2n−1,τ2

∑
σ2n+1,τ1

∑
σ2n+1,τ2

∑
σ2n,τ2

vRα (σ2n−1,τ1σ2n−1,τ2)v
L
α′(σ2n+1,τ1σ2n+1,τ2)

× T A(M=2)(σ2n−1,τ1σ2n−1,τ1σ2n,τ2; σ2n,τ1σ2n+1,τ1σ2n+1,τ2)

× 〈σ2n−1,τ2σ2n−1,τ2|e−βhodd/M |σ2n,τ2σ2n,τ2〉. (26)

We repeat a similar procedure for equations (17) to (26), and obtain the maximum eigenvalue
and its eigenvectors of the quantum transfer matrix for a desiredM.

Compared with the zero-temperature DMRG algorithm, the finite-T DMRG method is
more subtle from the point of view of numerical stability. The asymmetric density matrix
sometimes yields complex eigenvalues, although in principle they must be real. To avoid such
unphysical complex eigenvalues, we need accurate numerical calculations taking account of
the various symmetries of the system.

The free energy per site for the infinite system is obtained from the maximum eigenvalue
λ of the transfer matrix asF = −(T /2) ln λ. Static quantities such as the specific heat
and the susceptibilities are obtained from the free energy. The specific heat is calculated by
taking the numerical derivatives ofF with respect to the temperatureT . The spin and charge
susceptibilities are calculated by means of a shift ofF under an applied magnetic field or
chemical potential.

The calculation of the dynamic quantities requires additional steps. We first calculate
correlation functions in theβ-direction. This calculation requires good accuracy for the
eigenvectors of the transfer matrix〈9L| and |9R〉. Thus it is necessary to use the finite-
system algorithm of the DMRG method. The Green’s function in theβ-direction is obtained
from the left and the right eigenvectors of the transfer matrix whose eigenvalue is the largest
(see figure 6):

G(τj ) ≡ −Tr{e−βH ciσ (τj )c†
iσ (0)}/Z = −〈9L|ciσ (τj )c†

iσ (0)|9R〉. (27)

Similarly a local dynamic correlation functionχAB(τj ) is obtained as

χAB(τj ) ≡ Tr{e−βHAi(τj )Bi(0)}/Z = 〈9L|Ai(τj )Bi(0)|9R〉. (28)

By Fourier transformation, the Green’s function and the dynamic correlation function as
functions of the imaginary frequencies are obtained as

G(iωn) = β

M

∑
j

eiωnτjG(τj ), (29)

χAB(iωn) = β

M

∑
j

eiωnτj χAB(τj ) (30)

whereωn is the Matsubara frequency that isπ(2n + 1)/β for fermionic operators and 2πn/β
for bosonic operators.
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Figure 6. A schematic diagram of the calculation of the imaginary-time correlation function
〈9L|ciσ (τ3)c†

iσ (τ2)|9R〉. The Trotter number of this example isM = 3.

The real-frequency Green’s function and the dynamic susceptibility are obtained by
analytic continuation to the real-frequency axis. We can use the Padé approximants or the
maximum-entropy method for this purpose. The former method is based on the fittings
of G(iωn) or χAB(iωn) with rational functions of the frequency iωn which are analytically
continued to the real axis via iωn→ ω + iδ.

The maximum-entropy method is based on the spectral representations

G(τ) =
∫ ∞
−∞

ρ(ω)
e−τω

1 + e−βω
dω (31)

χAB(τ) =
∫ ∞
−∞

1

π
ImχAB(ω)

e−τω

1− e−βω
dω (32)

with

ρ(ω) = − 1

π
ImG(ω + iδ)

being the density of states. Starting from a flat spectrum, this method finally finds the optimal
ρ(ω) andχAB(ω) that reproduceG(τ) andχAB(τ) best.

The dynamical structure factorSAB(ω) is related to the imaginary part ofχAB(ω) through
the fluctuation dissipation theorem:

ImχAB(ω) = π(1− e−βω)SAB(ω). (33)

In section 3 we use the standard zero-temperature DMRG method to study the ground-
state properties of the paramagnetic metallic phase. In section 4 after a brief discussion of
the ground-state properties, using the zero-temperature DMRG method, finite-temperature
properties of the Kondo spin-liquid phase will be discussed extensively, using the finite-T

DMRG method.
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3. Tomonaga–Luttinger liquid properties of the paramagnetic metallic phase

This section is concerned with the paramagnetic phase away from half-filling; see figure 1.
Since there is no symmetry breaking, it is natural to consider that away from half-filling the
translationally invariant Kondo lattice model is metallic. In one dimension it is well known that
various interacting metallic systems including the Hubbard model and thet–J model belong
to the universality class of Tomonaga–Luttinger liquids [11]. Therefore, the first question
concerning the paramagnetic metallic phase of the Kondo lattice model is whether it belongs
to this class or not [12, 13, 4].

The spin-1/2 Tomonaga–Luttinger liquids have gapless charge and spin excitations. In
one dimension the charge excitations are characterized by the velocity of the charge density
vρ and the correlation exponentKρ . Similarly, the spin excitations are characterized by the
velocity of the spin densityvσ , but the correlation exponent in the spin sector is fixed by
the SU(2) symmetry,Kσ = 1. The low-energy physics of a Tomonaga–Luttinger liquid is
completely determined when these parameters are obtained. For example, the spin and charge
susceptibilities are given by

χσ = 2

πvσ
(34)

χρ = 2Kρ
πvρ

. (35)

Reflecting the gapless excitations, the density–density and spin–spin correlation functions
show power-law decays where the exponents are determined by the correlation exponent,Kρ .
The asymptotic forms of the density–density and spin–spin correlation functions are

〈n(x)n(0)〉 = Kρ/(πx)2 +A1 cos(2kFx)x
−(1+Kρ) +A2 cos(4kFx)x

−4Kρ (36)

〈S(x)S(0)〉 = 1/(πx)2 +B1 cos(2kFx)x
−(1+Kρ) (37)

wherekF = πρ/2, with ρ being the density of charge carriers, is the Fermi momentum [14].
The logarithmic corrections are omitted in equations (36) and (37).

For the Hubbard model or thet–J model, the definition of the density of carriers is
straightforward. On the other hand, for the Kondo lattice model it is already questionable.
When we naively take the conduction electrons as carriers, then the Fermi momentum is given
by kF = kFs = πnc/2. However, a different point of view is possible. Let us consider the
Kondo lattice model as an effective Hamiltonian for the periodic Anderson model. For the
latter, the density of carriers is the sum of the f-electron density and the conduction electron
density. According to the Luttinger sum rule [1], the positioning of Fermi points does not
change when the interaction is increased as long as the ground state remains paramagnetic.
Therefore this property may be carried over to the Kondo lattice model and it would also be
natural to assume thatkF = kFl = π(1 +nc)/2 for the Kondo lattice model [15, 12, 16, 13].

As regards the paramagnetic metallic phase, there are two basic questions.

(a) Is it a Tomonaga–Luttinger liquid?
(b) If it is, what is the size of the Fermi momentum? Is it large,kFl = π(1 +nc)/2, or small,

kFs = πnc/2?

The DMRG method is a powerful method for addressing these questions.
Let us denote the ground-state energy in a given spin-S subspace for a finite system with

L sites byEg(L,Nc, S) whereNc is the number of conduction electrons. In the following we
will consider only evenL andNc, and thereby integerS. The spin gap of a finite system is
defined by

1s(L) = Eg(L,Nc, S = 1)− Eg(L,Nc, S = 0). (38)
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As regards the charge excitations, we study the difference of the chemical potentials,µ+−µ−,
which is given by

2µ+ = Eg(L,Nc + 2, S = 0)− Eg(L,Nc, S = 0) (39)

2µ− = Eg(L,Nc− 2, S = 0)− Eg(L,Nc, S = 0). (40)
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Figure 7. (a) The size dependence of the difference of the chemical potentials,µ+ − µ−, in the
one-dimensional Kondo lattice model. (b) The size dependence of the spin gap.L is the system
size, and the density of conduction electrons is fixed atnc = 2/3. The energy unit ist . Typical
truncation errors in the DMRG calculations are 10−4.

Figure 7 shows (a) the spin-excitation gap and (b) the difference of the chemical potentials
as a function of the inverse of the system size. For the example, the density of the conduction
electrons is fixed atnc = 2/3 [13]. Both quantities go to zero as 1/L→ 0, which means that
the spin excitations and the charge excitations are gapless. Therefore it is most likely that the
paramagnetic metallic phase of the Kondo lattice model belongs to the universality class of
the Tomonaga–Luttinger liquids.

Now we will determine the parameters of the Tomonaga–Luttinger liquid. From the slope
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Table 1. Luttinger liquid parameters of the one-dimensional Kondo lattice model. The carrier
densitync is 2/3. The energy unit ist . The errors are estimated from the ambiguity of the
power-law decay of the charge-density Friedel oscillations.

Kρ vσ χσ vρ χρ

J/t = 0 1 — — 1.73 0.37
J/t = 1.5 0.19± 0.03 0.30± 0.06 0.42
J/t = 1.8 0.24± 0.02 0.014 46 0.41± 0.06 0.38
J/t = 2.0 0.27± 0.02 0.011 56 0.48± 0.06 0.36

of the spin gap, the velocities of the spin excitations are determined by

1s(L) = vσπ/L (41)

since the lowest spin excitation of a finite system with open boundary conditions has
the wavenumberπ/L. The difference of the chemical potentials is related to the charge
susceptibility by

µ+ − µ− = 2

χρL
. (42)

The values in table 1 forvσ andχρ are determined from the slopes. The values of the spin
susceptibility in table 1 are obtained from the spin velocity through equation (34).

To determine the charge velocity and the correlation exponent separately, another
independent measurement is necessary. The correlation exponentKρ may be determined
from the density–density or the spin–spin correlation functions. However, determination of
the exponent of a power-law decay is the most difficult part of any numerical calculations. In
order to determineKρ , we need to find the long-range behaviours of the correlation functions
with sufficient accuracy. Instead of looking at the correlation functions, we looked at the
Friedel oscillations, because the latter are numerically more reliable than the former [13, 17].
The reason for this is that the correlation functions are site off-diagonal, while the Friedel
oscillations are site diagonal.

The Friedel oscillations are density oscillations induced by a local perturbation. In a
Tomonaga–Luttinger liquid, power-law anomalies in the correlation functions are naturally
reflected in the Friedel oscillations. The usual Friedel oscillations induced by an impurity
potential are given by

δρ(x) ∼ C1 cos(2kFx)x
(−1−Kρ)/2 +C2 cos(4kFx)x

−2Kρ (43)

as a function of the distancex from the impurity [18–20]. Analogously, spin-density
oscillations induced by a local magnetic field behave as

σ(x) ∼ D1 cos(2kFx)x
−Kρ . (44)

Thus, we can determineKρ from the asymptotic form of the oscillations. It is worth noting
that the origin of the RKKY interaction may be traced back to the spin-density oscillations
induced by a localized spin.

The charge-density oscillations induced by the open boundary conditions are shown in
figure 8 forJ = 1.5t andJ = 2.5t at the densitync = 4/5 [17]. The spin-density oscillations
induced by the local magnetic fields applied at both ends in opposite directions are shown in
figure 9 for the same set of parameters [17]. It is clearly seen that the dominant period of the
charge-density oscillations is five sites,q = 2π/5, while for the spin-density oscillations it is
ten sites,q = π/5.

In the strong-coupling limit of the Kondo lattice model, each conduction electron forms
a local singlet with the f spin at the same site. However, away from half-filling these singlets
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Figure 8. Charge-density oscillations of the Kondo lattice model. The system size is 60 sites
and the carrier density isnc = 4/5. The solid line and the broken line correspond toJ = 2.5t
andJ = 1.5t , respectively. Typical truncation errors in the DMRG calculations are 1× 10−6 for
J = 2.5t and 3× 10−6 for J = 1.5t .
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Figure 9. Spin-density oscillations of the Kondo lattice model. The system size is 60 sites and
the carrier density isnc = 4/5. The solid line and the broken line correspond toJ = 2.5t and
J = 1.5t , respectively. The strength of the local magnetic fieldh is 0.1t . Typical truncation errors
in the DMRG calculations are 1× 10−6 for J = 2.5t and 3× 10−6 for J = 1.5t .

can move in the lattice with the elements of the effective hopping matrix reduced by half.
Equivalently, we can regard the unpaired f spins as mobile objects with the reduced hopping
energyt/2 with its sign reversed. Note that in the original model, hopping matrix elements
are defined by−t . Thus the effective model of the strong-coupling limit is thet-model where
the number of carriers isL−Nc and double occupancy of the carriers is prohibited.
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The charge response of the system is identical to that of the spinless fermions where
the Fermi point is given byπ − π(1− nc) = πnc. Therefore the induced charge density
shows oscillations corresponding to 2πnc, which is equivalent to 4kFs and 4kFl . This analysis
shows that in the strong-coupling limit the amplitude of the 4kF-oscillations dominates over
the 2kF-oscillations for the charge Friedel oscillations, equation (43). The period of five sites
is naturally understood in this way and we have confirmed that for a weaker coupling the
amplitude of the 2kF-oscillation develops.
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Figure 10. Fourier components of the spin-density Friedel oscillations.

When we consider the spins of the unpaired f electrons, there remains a macroscopic
2L−Nc-fold degeneracy. For the spin sector, the lifting of the degeneracy is essential. For the
specific model where the degeneracy is lifted by the next-nearest-neighbour hoppings, it is
shown analytically that the Fermi surface is big,kF = kFl [12]. For a finiteJ , the degeneracy
of the Kondo lattice model is always lifted. The period of ten sites of the spin-density Friedel
oscillations shown in figure 9 indicates that the 2kF-oscillations corresponding to 2kFl are
actually observed. Figure 10 shows that the 2kFl-oscillations corresponding to the large Fermi
surface are always dominating in the paramagnetic phase for various coupling constants and
various densities.

The Friedel oscillations obtained by the DMRG method clearly indicate that the Fermi
surface of the Kondo lattice model is large. At the early stage, the conclusions of the
bosonization studies were controversial. In the area of the paramagnetic metallic phase,
Fujimoto and Kawakami obtained the Tomonaga–Luttinger liquid with a large Fermi surface,
while White and Affleck predicted a Luther–Emery liquid with a spin gap [21, 22]. Later, it
was argued that an additional direct Heisenberg coupling between the f spins is necessary to
stabilize the Luther–Emery liquid [23]. Furthermore, the existence of a gapless excitation with
the momentum of 2kFl is shown rigorously by the Lieb–Schultz–Mattis construction [24].

In order to obtain the correlation exponentKρ , we used the slope of the envelope function
of the charge-density oscillations, assuming that the dominant component of the oscillations is
the 4kF-oscillations. Figure 11 showsKρ thus determined for the exchange coupling constants
from J = 4.0t to 1.5t . The density of the conduction electrons is fixed atnc = 2/3. Kρ is
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Figure 11. The correlation exponentKρ estimated from the decay rate of the charge-density Friedel
oscillations. The error bars are estimated from the ambiguity of the power-law fitting.nc = 2/3.
J is in units oft .

always smaller than 1/2 and monotonically decreases with decreasingJ . The limiting value
ofKρ = 1/2 in the strong-coupling limit is easy to understand since the strong-coupling limit
of the Kondo lattice model is equivalent to theU = ∞ Hubbard model.

The correlation exponent shows a small discontinuity at the boundary between the ferro-
magnetic and the paramagnetic phases,Jc = 2.4t [4, 25–27] for nc = 2/3. Below
Jc, Kρ decreases more quickly and becomes lower than 1/3, which means that the long-
range behaviour of the density–density correlation is governed by the 4kF-oscillations rather
than the 2kF-oscillations. With further decreasingJ ,Kρ seems to cross the value 3− 2

√
2∼

0.17. Since the exponent of the power-law anomaly of the momentum distribution function is
given by(Kρ + 1/Kρ − 2)/4, the power-law anomaly is removed below this point and a clear
Fermi surface cannot be seen any longer.Kρ seems to monotonically decrease toward 0 with
J approaching the singular pointJ = 0.

Through the study of the Friedel oscillations by the DMRG method, it has become clear that
the paramagnetic metallic phase of the one-dimensional Kondo lattice model is a Tomonaga–
Luttinger liquid with a large Fermi surface. This Tomonaga–Luttinger liquid is unique in the
sense thatKρ is smaller than 1/2. This small value ofKρ may be attributed to the long-range
nature of the effective interactions with strong retardation [14, 28]. Recently, observation of the
Friedel oscillations by the DMRG method has been shown to be useful also in the discussion
of critical behaviours of the Hubbard model [29].

4. The Kondo spin-liquid phase at half-filling

The half-filled KL model is always insulating in one dimension. This conclusion was obtained
from exact-diagonalization study [5]. On the basis of a finite-size scaling, it was shown that
the finite excitation gap remains for any finiteJ . The result has been confirmed by the DMRG
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method [30] and was later supported by a mapping to a non-linear sigma model [31] and by the
bosonization approach [32]. In this section we discuss the basic properties of this insulating
state.

As regards the insulating phase, the question that we would like to address here is that
of which characteristics distinguish the Kondo insulators from the usual semiconductors. The
most significant difference is that there are no gaps at high temperatures and they are induced
as the temperature is lowered. Furthermore, the excitation gaps induced by the temperature are
different according to the channels. The difference of the excitation gaps and more generally
the differences between the temperature dependences of various excitation spectra are naturally
reflected in the temperature dependences of various thermodynamic quantities.

Clearly the lowest excitation gap which is the spin gap for the Kondo insulator defines
the smallest energy scale of the system. In ordinary band insulators the band gap defines
the smallest energy scale which controls not only the spin excitations but also the charge
excitations. It is also interesting to compare the smallest energy scale of the Kondo lattice
problem with that of the single-impurity Kondo effect, namely the Kondo temperatureTK. It
is well known that the low-temperature properties of the impurity model are governed by the
single energy scale ofTK.

In the present section, first we will discuss the spin gap, the charge gap and the quasiparticle
gap, using the zero-temperature DMRG method. Then we will discuss the temperature
dependence of the spin susceptibility, the charge susceptibility and the specific heat, using
the finite-T DMRG method. The temperature dependences of the single-particle excitation
spectrum, the dynamic spin–spin correlation function and the charge–charge correlation
function are also discussed using the finite-T DMRG method. For the analytic continuation
which is necessary for discussing the dynamic quantities, it is shown that the maximum-entropy
method is very useful [33–35].

4.1. Spin, charge and quasiparticle gaps

To understand the physics of the insulating state of the half-filled Kondo lattice model, it
is instructive to consider the limit of strong exchange couplingJ . In this limit every f
spin, together with a conduction electron, forms a local singlet at every site. To create
spin excitations, the minimum energy cost isJ , which is the energy difference between the
local spin-singlet state and the local spin-triplet state. On the other hand, creation of charge
excitations requires the minimum energy of 3J/2, which corresponds to the energy cost of
breaking two local singlets by transferring a conduction electron to a neighbouring site.

The excitation gaps monotonically decrease with decreasing exchange constant, but they
do not vanish at any finite value ofJ . In particular, the weak-coupling limitJ � t is interesting.
In this regime the KL model is equivalent to the periodic Anderson model with strong Coulomb
repulsion in the f orbitals. The salient feature of the strong Coulomb interaction in the periodic
Anderson model appears in the diverging ratio between the charge and spin gaps. The limit of
J = 0 is singular; here, the conduction electrons and the f spins are decoupled, and both the
spin and charge gaps vanish.

For the discussion of the gaps, we take into account also the Coulomb interaction between
the conduction electrons. Since the spin and charge gaps are tiny in the weak-coupling regime,
it is no longer justified to neglect the Coulomb interaction between the conduction electrons.
This Coulomb interaction suppresses the double occupation of conduction electrons, which
eventually leads to the formation of local magnetic moments of the conduction electrons.
Therefore the effect of the Coulomb interaction on the spin and charge gaps of the KL model
sheds light on the nature of the gap formation in the Kondo insulators.
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The model that we consider in this subsection is the following one-dimensional KL model
with the Coulomb interaction between the conduction electronsUc:

H = −t
∑
iσ

(c
†
iσ ci+1σ + HC) + J

∑
iµ

S
µ

i σ
µ

i +Uc

∑
i

(
c

†
i↑ci↑ −

1

2

)(
c

†
i↓ci↓ −

1

2

)
. (45)

The Coulomb interaction is represented in the last term. In this section we consider the case
of half-filling where the total number of conduction electrons is equal to the number of lattice
sitesL:

Nc ≡
∑
iσ

c
†
iσ ciσ = L.

This Hamiltonian is reduced to the Hubbard model in the limit ofJ → 0, and to the usual KL
model forUc = 0.

In the impurity Kondo model, all low-temperature properties are scaled by the single
energy scaleTK ∼ D exp(−1/ρJ ), whereρ is the density of states of the conduction band
at the Fermi level and is given by 1/2πt in one dimension. In contrast to the single-impurity
Kondo model, the KL model has many f spins which are coupled through the conduction
electrons. A basic question of the lattice problem is how the intersite correlations appear in the
energy scale. The simplest extension of the form ofTK may be the inclusion of an enhancement
factor in the exponent: the spin gap is expected to behave as

1s ∝ exp

(
− 1

αρJ

)
(46)
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Figure 12. The spin gap of the half-filled one-dimensional Kondo lattice model with Coulomb
interaction. The thick curve represents the result from perturbation theory in terms oft/J for
Uc = 10t . A typical truncation error in the DMRG calculation is 10−6 for J = 1. The error bars
are estimated fromL−1- andL−2-scalings. The gap energies, exchange constantJ and Coulomb
interactionUc are in units oft .
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whereα is the enhancement factor. The Gutzwiller approximation predicts the enhancement
factor α = 2 [36]. Tsunetsuguet al have estimated that the enhancement factor in one
dimension is in the range 16 α 6 5/4 by using a finite-size scaling for the results obtained by
means of exact diagonalization [5]. In the following we present the results on the enhancement
factor obtained by the DMRG method.

The spin gap is obtained from the difference of the ground-state energies in the subspaces
where the totalSz is zero and one, equation (38); the SU(2) symmetry in the spin space
guarantees that the energy difference is the same as the spin gap in the subspace of zero total
Sz. The spin gap of the bulk system is estimated from the following scaling function:

1s(L) = 1s(∞) + βL−2 + O(L−4). (47)

The spin gaps obtained are plotted in figure 12 on a logarithmic scale as a function of
1/J . The results are obtained by the extrapolation to the bulk limit using the data for
L = 6, 8, 12, 18, 24, 40. The DMRG calculations were done by using the finite-system
algorithm with open boundary conditions, retaining up to 300 states for each block. The
enhancement factor is obtained from the slope in the figure, and determined to beα = 1.4(1)
for Uc = 0. There are some uncertainties in the extrapolation to the bulk limit for tiny gaps.
However, within the present accuracy we do not observe any indication of the logarithmic
correction to the exponent which was predicted by the semiclassical approach [31].
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Figure 13. TheUc-dependence of the exponent of the spin gap. The Coulomb interactionUc is in
units oft .

Now we consider the effect of the Coulomb interaction. In the weak-coupling region it
is natural to extend the form of equation (46) to finiteUc allowing theUc-dependence of the
exponent. Indeed the numerical data are nicely fitted by this form, as shown in figure 12.
TheUc-dependence obtained is shown in figure 13, which indicates thatα(Uc) increases with
increasingUc and the asymptotic behaviour is linear inUc. The KL model with the Coulomb
interaction is mapped to a Heisenberg chain coupled with the localized f spins in the limit
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of Uc/t → ∞. The linearUc-dependence of the exponentα = 0.78Uc/t + 0.7 in figure 13
means that the spin gap of the effective-spin model behaves as1s ∼ exp(−2Jeff/J ) with
Jeff = 4t2/Uc being the effective coupling of the Heisenberg chain. In order to check this
form, we have analysed the numerical data for the spin system obtained by Igarashiet al [37],
and found a good coincidence. Thus we conclude that the enhancement factorα increases
monotonically with increasingUc. This is natural since the origin of the spin gap is the singlet
binding between the localized spins and the conduction electrons, for which the Coulomb
interaction acts favourably by suppressing the double occupancy.

In contrast to the single-impurity Kondo model, the KL model has a second energy scale
that characterizes the charge excitations at low temperatures. The charge excitations keep spin
quantum numbers, and the charge gap is defined by the difference between the lowest energies in
the subspaces ofNc = L andNc = L+2: Eg(L,Nc = L+2, S = 0)−Eg(L,Nc = L, S = 0).
Owing to the hidden SU(2) symmetry in the charge space, the energy difference is the same
as the charge-excitation gap in the subspace of the fixed number of electronsNc = L [38].
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Figure 14. The charge gap of the half-filled one-dimensional Kondo lattice model with the Coulomb
interaction. The results on the vertical axis were obtained from the exact solution given by Lieb and
Wu. Typical truncation errors in the DMRG calculation are 10−6 for J = 1 and 10−4 for J = 0.2,
which are the dominant sources of numerical errors since the finite-size scaling, equation (47), is
well obeyed. The gap energies, exchange constantJ and Coulomb interactionUc are in units oft .

Figure 14 shows the charge gap obtained by the extrapolation to the infinite system. The
results forJ = 0 are known as the Hubbard gap of the one-dimensional Hubbard model which
is exactly solved by the Betheansatz[39]. The asymptotic forms of the charge gap are given
by 1c ∝

√
Uct exp(−1/ρUc) for smallUc and by1c ∝ Uc − 4t for largeUc. The results

obtained for finiteJ are consistent with the exact ones, which are denoted by the crosses on
the vertical axis.

For Uc = 0 the charge gap is linear inJ in the small-J/t limit. As is shown by the
exact-diagonalization study, the charge gap is much bigger than the spin gap in the weak-
coupling regime [38]. This implies that the correlation length for the spin degrees of freedom
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is much longer than the charge-correlation length. Therefore for the discussion of the charge
gap it is justified to assume that the spin–spin correlation length is infinitely long. Under the
assumption of an infinite spin-correlation length, the charge gap is calculated as

1c = J

2
. (48)

From figure 14 we also find that the charge gap increases with increasing Coulomb interaction
Uc.

The charge excitations are created by adding two additional electrons, keeping the spin
quantum numbers fixed. When we put a single electron in the ground state, a quasiparticle
excitation is produced. Here we consider the relation between the charge gap1c and the
quasiparticle gap1qp, which is defined byEg(L,Nc = L ± 1, S = ±1/2) − Eg(L,Nc =
L, S = 0). In the strong-coupling limit,J/t → ∞, it is evident that the charge gap is twice
the quasiparticle gap owing to the SU(2) symmetry in the charge space. In the second-order
perturbation int/J , one can show that the interaction between the two additional electrons is
repulsive, leading only to a phase shift. Therefore the charge gap in the bulk limit is twice the
quasiparticle gap1qp:

1c = 21qp. (49)

A similar argument is also valid for the periodic Anderson model [38]. The validity of this
relation was checked by a DMRG calculation for the entire range of the exchange constantJ .
As regards the spin gap, the lowest spin excitation may be considered as a bound state of a
quasielectron and a quasihole.

4.2. Susceptibilities at finite temperatures

The spin and charge gaps determined at zero temperature are very different in the weak-
coupling regime. The spin gap is exponentially small, while the charge gap is proportional to
J . The large charge gap originates from the staggered internal magnetic fields induced by the
long correlation length of the f spins. At finite temperatures, however, the spin correlations are
subject to the thermal fluctuations. When the temperature becomes comparable to the spin gap,
the spin-correlation length gets smaller and all of the electronic properties including the charge-
excitation spectrum are reconstructed. In this section we study such an interplay between the
spin and charge excitations at finite temperatures by looking at the thermodynamic quantities.
In what follows, we consider the original KL model, neglecting the Coulomb interaction
between the conduction electrons.

In order to calculate thermodynamic quantities, we use the finite-T DMRG method
discussed in section 2 [8, 7]. In this method the free energy is obtained from the maximum
eigenvalue of the quantum transfer matrix. The spin and charge susceptibilities are obtained
from the derivatives of the free energy with respect to the external magnetic field or chemical
potential. The calculations are performed using the infinite-system algorithm, retaining 40
states per block. The truncation errors in the calculations are typically 10−3 and, at the lowest
temperature, 10−2 for the Trotter numberM = 50.

We first consider the temperature dependence of the uniform spin susceptibility. The spin
susceptibility is obtained from the change of the free energy caused by a small magnetic field
h: δF = χsh2/2. The results forJ/t = 0, 1.0, 1.2, 1.6 and 2.4 are shown in figure 15.

WhenJ/t = 0, the localized spins and the conduction electrons are uncorrelated. The
susceptibility is given by the sum of the Curie term due to the free f spins and the Pauli term
of the free conduction electrons. The contribution of the Pauli susceptibility of the conduction
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Figure 15. The spin susceptibility of the half-filled one-dimensional Kondo lattice model.
The truncation errors in the finite-T DMRG calculations are typically 10−3 and, at the lowest
temperature, 10−2.

electrons shown by the dashed line in figure 15 is relatively small, and the total susceptibility
for J/t = 0 is dominated by the Curie term.

For finiteJ , the low-temperature part ofχs sharply drops with decreasing temperature.
This drastic change is due to the appearance of the small energy scale for the spin sector [40, 9].
The spin gap of 0.08t for J/t = 1.0 is consistent with the characteristic temperature at which
χs starts to decrease, deviating from the Curie law.

Table 2. Activation energies obtained from the spin and charge susceptibilities,1χs and1χc , of
the one-dimensional Kondo lattice model at half-filling. The quasiparticle gap1qp and the spin gap
1s are obtained by the zero-temperature DMRG method. The charge gap is twice the quasiparticle
gap:1c = 21qp

1χs /t 1χc /t 1s/t 1qp/t

J/t = 1.0 0.08 0.36
J/t = 1.2 0.16 0.47
J/t = 1.6 0.45± 0.1 0.6± 0.1 0.4 0.7
J/t = 2.4 1.2± 0.1 1.0± 0.1 1.1 1.1
J/t = 3.0 1.6± 0.1 1.4± 0.1 1.8 1.5

In order to determine the energy scale at low temperatures, we estimate the activation
energy by fitting the susceptibility with an exponential form. The estimated activation energy
for the spin susceptibility is summarized in table 2 forJ/t = 1.6, 2.4 and 3.0. Compared with
the quasiparticle gap and the spin gap, both of which are responsible for magnetic excitations,
we conclude that the lower of them determines the low-temperature energy scale of the spin
susceptibility. This is consistent with the general form of the susceptibility, which is written
as

χs = Z−1N−1β
∑
m

e−βEm〈m|S total
z |m〉

2
(50)

Z =
∑
m

e−βEm. (51)
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The point is that equations (50) and (51) apply for both the canonical and the grand-canonical
ensembles on properly defining the states|m〉. In the thermodynamic limit, the susceptibilities
for the two ensembles should give the same answer. From this consideration it is concluded that
the smaller of the spin gap and the quasiparticle gap determines the low-temperature energy
scale. For the case of small exchange coupling(J/t � 1), the spin gap is smaller than the
quasiparticle gap and thus the low-temperature energy scale ofχs is determined by the spin
gap.
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Figure 16. The charge susceptibility of the half-filled one-dimensional Kondo lattice model.

In order to see the effect of thermal fluctuations of the f spins on the charge excitations, we
next calculate the charge susceptibilityχc. χc is obtained from the change of the free energy
due to a small shift of chemical potentialµ, δF = χcµ2/2. In the present calculation we use
the fact that the chemical potential is zero at half-filling, owing to the SO(4) symmetry of the
model [38]. The results forJ/t = 0, 1.0, 1.2, 1.6 and 2.4 are shown in figure 16.

For J/t = 0, χc does not show diverging behaviour at low temperatures, in contrast to
χs . In the limit whereT = 0, χc is equal to the density of states of the conduction electrons,
which is 1/πt including the two spin directions. This is expected since the charge degrees
of freedom are governed by the conduction electrons. Since there is no interaction,χc/4 is
equal to the spin susceptibility of the free conduction electrons. The slight increase inχc in
the low-temperature region is a characteristic feature of the one-dimensional system, where
the density of states diverges at the band edges.

A finite value ofJ produces a sharp drop inχc at low temperatures. Similarly to the case
for χs , this drop is due to the appearance of the small energy scale1c for the charge sector. The
energy scale is determined by the activation energy for the charge susceptibility. On fitting
χc with an exponential form, the activation energy1χc is obtained as listed in table 2 for
J/t = 1.6, 2.4 and 3.0. From this table it is concluded that the quasiparticle gap determines
the low-temperature energy scale of the charge susceptibility.

Although the quasiparticle gap determines the exponential temperature dependence at low
temperatures, it is not the only energy scale forχc. This may be best understood by looking at
χc for J/t = 1.0. A sharp decrease ofχc is seen at aroundT ∼ 0.1t , which is a much smaller
value than that of the quasiparticle gap 0.36t but rather close to the value of the spin gap 0.08t .
This fact suggests that the charge-excitation spectrum is reconstructed when the temperature
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is raised up to the spin gap. We will discuss this aspect in more detail in connection with the
temperature dependence of various excitation spectra.

4.3. Specific heat

In order to see how the entropy of the system is released, we next calculate the specific heat. The
specific heat is calculated from the second derivative of the free energy:C = −T ∂2F/∂T 2.
The results forJ/t = 0, 1.0, 1.2, 1.6 and 2.4 are shown in figure 17.
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Figure 17. The specific heat of the half-filled one-dimensional Kondo lattice model.

At J/t = 0 the specific heat of this model is given by the sum of the contributions from the
free localized spins and the free conduction electrons. For finiteJ they are combined to form
a two-peak structure. The peak at higher temperatures is almost independent of the exchange
constant and similar to the specific heat of free conduction electrons. Thus the structure
at higher temperatures may be understood as a band-structure effect of the one-dimensional
conduction electrons. In contrast to the higher-temperature structure, the structure at lower
temperatures strongly changes its form withJ . The peak shifts towards higher temperatures
and becomes broader with increasingJ .

With further increase of the exchange coupling, the spin gap becomes comparable to the
hopping matrix elementt . In this situation the various energy scales are not distinguishable
and the specific heat possesses a single-peak structure as shown forJ/t = 2.4.

4.4. Dynamic properties

The dynamic properties of the half-filled KL model show clear features characteristic of
strongly correlated insulators. The unusual temperature dependence of the excitation spectra
is one of the most important features of the interacting systems. In fact, the behaviour of the
static susceptibilities discussed in the preceding subsection indicates that the excitation gaps
develop at low temperatures.

In this section we calculate the dynamic spin and charge structure factors,S(ω) andN(ω),
and the density of states,ρ(ω). By looking at their temperature dependence we can study the
temperature evolution of the excitation gaps and the relations among dynamic quantities. To
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obtain the dynamic quantities we first calculate the correlation functions in the imaginary-time
direction. As we have discussed in section 2, the correlation functions in the imaginary-time
direction are directly calculated from the left and right eigenvectors obtained by applying the
finite-T DMRG method to the transfer matrix.
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Figure 18. Imaginary-time correlation functions,G(τ), of the half-filled one-dimensional Kondo
lattice model;J/t = 1.6. The Trotter numberM = 60. The inset shows the results for different
numbers of states,m, retained in the DMRG calculations. The truncation errors in the DMRG
calculations are 2× 10−3 for m = 26 and 3× 10−4 for m = 40.

Examples of the single-particle Green’s function as a function of the imaginary time
calculated using the finite-T DMRG method are shown in figure 18. To obtain the spectral
functions, we first Fourier transform the imaginary-time correlation functions and then need
to perform analytic continuation from the imaginary-frequency axis to the real-frequency
axis. One straightforward method for performing the analytic continuation is to use the Padé
approximants. Since the DMRG calculation yields no statistical errors, the Padé approximants
show good convergence in many cases. However, it is still difficult to obtain the spectral
functions using the Padé approximants in a stable manner when a spectrum has a nearly
singular form. The reason for this is that using the Padé approximants involves the use of
rational functions of Matsubara frequencies iωn.

Even when a spectrum has a nearly singular form, the maximum-entropy method still
works well. An advantage of this method is that we can explicitly use the symmetries and the
positiveness of the spectral function. The results obtained by the two methods are compared
in figure 19. At high temperatures, the two sets of results coincide with each other, but with
decreasing temperature the convergence of the Padé approximants becomes worse due to the
growing singularity in the spectral function in the low-frequency region. The results obtained
using the maximum-entropy method are stable even at low temperatures. Thus in the following
we employ the maximum-entropy method to study the temperature evolution of the dynamic
correlation functions [41].

The quasiparticle density of states obtained forJ/t = 1.6 at the temperaturesT/t = 0.1,
0.14, 0.2, 0.25, 0.3, 0.6 is shown in figure 20. The existence of the quasiparticle gap is seen
as a clear dip structure aroundω = 0. At low temperatures sharp peaks appear atω = ±1qp

separated from the higher-frequency part of the spectral weight. The sharpness of the peaks
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Figure 19. The quasiparticle density of states,ρ(ω), obtained fromG(τ) by using the Pad́e
approximants and the maximum-entropy method (MEM). The Trotter numberM = 60.
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Figure 20. The quasiparticle density of states,ρ(ω), of the half-filled one-dimensional Kondo
lattice model;J/t = 1.6. The Trotter numberM = 60, and the number of states retained is
m = 40.

suggests the formation of heavy-quasiparticle bands at the gap edges. The high-frequency
part of the spectral weight extends to the region far from the edge of the free conduction
bandω = 2t , which shows the significance of the multiple excitations accompanying the
quasiparticle excitations.

As the temperature is increased, the peak at the threshold gets broadened, and at the
temperaturesT ∼ 1s the peak and the accompanying dip between the low- and high-frequency
parts completely disappear. This result shows that although the sharp peaks of the quasiparticle
density of states are located at the frequenciesω = ±1qp, they disappear at around the
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Figure 21. The dynamic spin structure factor of the f spins,Sf (ω), in the half-filled one-dimensional
Kondo lattice model;J/t = 1.6.

temperatureT ∼ 1s which is much lower thanT ∼ 1qp.
In order to see what happens at the temperaturesT ∼ 1s , we next consider the f-spin

dynamic structure factorSf (ω). The calculatedSf (ω) are presented in figure 21. At the lowest
temperature the spin gap is clearly seen, with a sharp peak at the gap edge. This characteristic
peak has the most of the spectral weight, which shows concentrated f-spin excitations on the
energy scale of1s . There is a broad peak on the higher-frequency side. As is shown later, a
similar structure and temperature dependence appear in the dynamic spin structure factor of
the conduction electronsSc(ω). Thus we conclude that through the exchange coupling, the
excitations of the f spins are mixed with those of conduction spins, which yields this broad
peak in the higher-frequency part ofSf (ω).

With increasing temperature, the peak structure atω = 1s becomes broad and the spectral
intensity increases around the zero frequency|ω| < 1s . At the temperaturesT ∼ 1s , the
peak position of the spectrum shifts to the zero frequency, and the peak height becomes almost
temperature independent. The spectral intensity at the zero frequency is directly related to the
NMR relaxation rate 1/T1. Hence the present results show that 1/T1 is nearly temperature
independent at high temperatures and drastically decreases with decreasing temperature below
the characteristic temperature of the order of1s .

The dynamic spin structure factor for the conduction electrons,Sc(ω), is shown in figure 22.
At low temperatures,Sc(ω) has two peaks. The peak on the low-frequency side is located at
an energy of1s , similarly to Sf (ω). This peak corresponds to the spin excitations of the
singlet bound states composed of conduction electrons with f spins bound to the triplet states.
The high-frequency peak is located slightly above the charge gap, which corresponds to the
spin excitations due to quasiparticles. With increasing temperature, both peaks lose their
intensity, and above the temperatureT ∼ 1s the low-frequency peak structure disappears. The
spectrum on the high-frequency side becomes similar to that of the dynamic charge structure
factorN(ω). This means that high-frequency excitations are dominated by the quasiparticle
excitations of almost free conduction electrons, and thus the relationSc(ω) = Nc(ω)/4 is
satisfied approximately.

The dynamic charge structure factorN(ω) is shown in figure 23. At the lowest temperature,
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Figure 22. The dynamic spin structure factor of the conduction electrons,Sc(ω), in the half-filled
one-dimensional Kondo lattice model;J/t = 1.6.
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Figure 23. The dynamic charge structure factor of the conduction electrons,Nc(ω), in the half-filled
one-dimensional Kondo lattice model;J/t = 1.6.

two clear peaks appear, a smaller peak atω ∼ 0 and a bigger one at1c. These two peaks
originate from the sharp peak structure inρ(ω) atω = ±1qp. The excitations of thermally
populated quasiparticles within the sharp peak inρ(ω) contribute to the peak atω = 0, while
the excitations between the peaks inρ(ω) give rise to the peak inN(ω) at ω ∼ 1c. With
increasing temperature, the increased number of thermally populated quasiparticles enhance
the peak atω = 0, but at the temperatureT ∼ 1s the peak structure is completely smeared
out, which reflects the disappearance of the peak inρ(ω). The gap structure ofN(ω) and the
energy scale of1c become unclear at temperatures much smaller than1c.

The dynamic quantities studied by the finite-T DMRG method have revealed the many-
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body nature of the gap formation in the Kondo insulators. The difference among the excitation
gaps depending on the channels is a characteristic feature of the Kondo insulators as compared
with the ordinary band insulators. The temperature-induced gap formation for the single-
particle density of states is further clear evidence of the many-body feature. Even at a fixed
temperature a renormalized band picture fails to capture the essential physics of the strongly
correlated insulators. A typical example is that the two-body excitation spectrumN(ω) is
very different from a convolution of the one-body excitation spectrumρ(ω). For the Kondo
insulators there are several small energy scales, corresponding to the spin gap, the quasiparticle
gap and the charge gap. Among them the lowest one, the spin gap, plays a special role. At
temperatures higher than the spin gap, the excitation spectra in the charge sector are also
modified strongly. This means that the whole excitation spectrum is reconstructed above the
temperature corresponding to the lowest energy scale.

5. Summary and discussions

In this review we have discussed the Tomonaga–Luttinger liquid properties of the one-
dimensional Kondo lattice model away from half-filling. In particular, it is concluded that there
is a large Fermi surface in the ground state from an investigation of the spin and charge Friedel
oscillations. At half-filling of the one-dimensional Kondo lattice model, the ground state is
always an incompressible spin-liquid phase. Studies on the dynamic correlation functions
have revealed the many-body nature of this insulating phase in several ways.

These developments have been achieved by applying the density matrix renormalization
group method either to the Hamiltonian itself or to the quantum transfer matrix. In the problem
of the Kondo lattice model, there appear small energy scales at low temperatures. This implies
that the correlation lengths for various quantities are relatively long and therefore we need
sufficiently large systems if we are to observe intrinsic properties. On the other hand, there
are eight states per site in the Kondo lattice problem. Of course for a quantum spin-1/2 chain
there are only two states per site. Exact-diagonalization studies can perform well for the latter,
but only poorly for the former. In this situation the DMRG method shows its full advantage
for the Kondo lattice model.

We would like to stress that now we can calculate dynamic quantities at finite temperatures
by applying the finite-T DMRG method to the quantum transfer matrix. This method is free
from statistical errors and the truncation errors are the only numerical errors. Therefore, a
much better accuracy is obtained for the imaginary-time data, from which the corresponding
spectral function may be obtained reliably through the maximum-entropy method. Another
advantage of the finite-T DMRG method compared with the quantum Monte Carlo simulations
is that we do not have the negative-sign problem for any quantum systems.

Generally speaking, more elaborate calculations are required for the finite-T DMRG
method compared with the zero-temperature DMRG method. Finite-temperature properties,
both static and dynamic, of the Tomonaga–Luttinger liquid phase are of great interest, and
studies in this direction are now in progress. In the near future it will become possible to address
these questions. The investigation of a completely fermionic model for heavy fermions, for
example the periodic Anderson model, is also left for the future.
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